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Harrow-Hassidim-Lloyd (HHL) Algorithm

2

• Quantum linear system problem: 𝐴 𝑥 = 𝑏 , 

• 𝐴 is a Hermitian matrix, 𝑏 =
𝑏

𝑏
2

, 𝑥 =
𝐴−1|𝑏⟩

||𝐴−1|𝑏⟩||2

Load |𝑏⟩ 
into 
quantum 

computer

Eigen-decomposition
Post-selection and undo 

QPE to obtain |𝑥⟩

The phases estimated in QPE are stored as a 𝑛𝑐-bit binary string

• 𝑛𝑐 is the number of clock qubits for QPE
Larger 𝑛𝑐 ⟹ Higher precision in eigenvalue estimation ⟹ Lower HHL solution error

However, each additional clock qubit roughly doubles the total number of gates in the HHL circuit.



HPC Quantum Simulator: NWQSim (1/2)
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[1] Li, Ang, et al. "Density Matrix Quantum Circuit Simulation via the BSP Machine on Modern GPU Clusters." SC-2020. http://github.com/pnnl/DM-Sim 

[2] Li, Ang, et al. “SV-Sim: Scalable PGAS-based State Vector Simulation of Quantum Circuits”, SC-2021. http://github.com/pnnl/SV-Sim
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The simulation latency of SV-Sim to the default simulators of Qiskit (IBM), Cirq (Google), and Q# 

(Microsoft) on the V100-DGX-2 platform using a single CPU core or a single GPU

Quantum routines evaluated for SV-Sim
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HPC Quantum Simulator: NWQSim (2/2)
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2q gate fuses 1q

(forward)

fuse

1q gate fuses 1q
fuse

Strategy: 1q fusion ➔ 2q-fuse-1q-

forward ➔ 2q-fuse-1q-backward ➔ 2q 
fusion

• May switch qubits to enable more 
2q fusion opportunities 

• Fusion can bring a 2x-12x reduction in total gate count

[1] Li, Ang, et al. "Density matrix quantum circuit simulation via the BSP machine on modern GPU clusters." SC-2020. http://github.com/pnnl/DM-Sim 

[2] Li, Ang, et al. “SV-Sim: Scalable PGAS-based State Vector Simulation of Quantum Circuits”, SC-2021. http://github.com/pnnl/SV-Sim

http://github.com/pnnl/DM-Sim
http://github.com/pnnl/DM-Sim
http://github.com/pnnl/DM-Sim
http://github.com/pnnl/SV-Sim
http://github.com/pnnl/SV-Sim
http://github.com/pnnl/SV-Sim


NWQSim Performance on Different GPUs
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The tested HHL circuits use randomly generated 

sparse matrices and random RHS vectors. The 
three numbers in each circuit’s name denote: (1) 

number of qubits in the circuit; (2) number of 

qubits used for data loading; and (3) total number 

of gates.



Azure Quantum Resource Estimator

[1] Beverland, M.E., Murali, P., Troyer, M., Svore, K.M., Hoefler, T., Kliuchnikov, V., Low, G.H., Soeken, M., Sundaram, A. and Vaschillo, A., 2022. Assessing requirements to scale to 

practical quantum advantage. arXiv preprint arXiv:2211.07629.

Error budget is the overall allowed errors for the algorithm. Its value is equally divided into

• logical error probability: the probability of at least one logical error
• T-distillation error probability: the probability of at least one faulty T-distillation

• rotation synthesis error probability: the probability of at least one failed rotation synthesis.

After or pre- layout: if enforce 2-D nearest-neighbor connectivity of the qubits or not



QC Applications in Power Systems

7[1] Zhou, Y., Tang, Z., Nikmehr, N., Babahajiani, P., Feng, F., Wei, T.C., Zheng, H. and Zhang, P., 2022. Quantum computing in power systems. IEnergy, 1(2), pp.170-187.

• Power flow and state 
estimation problems

▪ The goal is to analyze the 
steady-state behavior of power 
systems by describing the 
relationship between bus 
voltages (magnitude and phase 
angles), currents, and power 
injections in a power system



AC Power Flow Problem

▪ For a system with 𝐵 buses and 𝐺 generators → 2(𝐵 − 1) − (𝐺 − 1) unknowns 

➢ voltage magnitudes, |𝑉𝑘 |, 

➢ phase angles, 𝜃𝑘 , for load buses and voltage phase angles for generator buses

▪ Power flow equations

▪ 𝑃𝑘: real power injection at bus 𝑘

▪ 𝑄𝑘: reactive power injection at bus 𝑘

▪ |𝑉𝑘|: voltage magnitude at bus 𝑘

▪ 𝜃𝑘𝑗: phase angle difference between bus 𝑘 and bus 𝑗

▪ 𝑌𝑘𝑗: admittance between bus 𝑘 and bus 𝑗
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Newton-Raphson Method

• Solve 𝑓 Ԧ𝑦 = Ԧ𝑑 where 𝑓 is a non-linear algebraic function
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Ԧ𝑦(𝜈+1) = Ԧ𝑦(𝜈) + 𝐽−1( Ԧ𝑑  − 𝑓 Ԧ𝑦(𝜈) )

With 1st-order Taylor series 

expansion

 Ԧ𝑑 = 𝑓 Ԧ𝑦(0) + ቚ
𝑑𝑓

𝑑𝑦 𝑦(0)
( Ԧ𝑦 − Ԧ𝑦(0))

Ԧ𝑦 = Ԧ𝑦(0) + 𝐽−1( Ԧ𝑑 − 𝑓 Ԧ𝑦(0) )

In the N-R iteration 𝜈 + 1

• Solve 

𝐽Δ Ԧ𝑦(𝜈+1) = Δ Ԧ𝑓(𝜈)

   where Δ Ԧ𝑓(𝜈) = Ԧ𝑑  − 𝑓 Ԧ𝑦(𝜈)

• Update

• Ԧ𝑦(𝜈+1) = Ԧ𝑦(𝜈) + Δ Ԧ𝑦(𝜈+1)

• Δ Ԧ𝑓(𝜈+1) = Ԧ𝑑  − 𝑓 Ԧ𝑦(𝜈+1)

• Set to converge when Δ Ԧ𝑓(𝜈)  is small

𝜕Δ𝑃

𝜕 Ԧ𝜃

𝜕Δ𝑃

𝜕|𝑉|

𝜕Δ𝑄

𝜕 Ԧ𝜃

𝜕Δ𝑄

𝜕|𝑉|

Δ Ԧ𝜃

Δ|𝑉|
= −

Δ𝑃

Δ𝑄

in AC power flow problem



HHL and Newton-Raphson Method
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HHL Errors Convergence Criteria Δ Ԧ𝑓(𝜈)

• Linear systems solved are in the size of 𝟏𝟔 × 𝟏𝟔
• All quantum and classical runs converge at the same Ԧ𝑦



Runtime Estimation under a Surface Code
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Estimate the runtime under a surface code that encodes 98 physical qubits into a logical qubit

[1] Beverland, M.E., Murali, P., Troyer, M., Svore, K.M., Hoefler, T., Kliuchnikov, V., Low, G.H., Soeken, M., Sundaram, A. and Vaschillo, A., 2022. Assessing requirements to scale to 

practical quantum advantage. arXiv preprint arXiv:2211.07629.

Qubit parameters from [1]:

• (𝜇𝑠, 10−4): 100 𝜇𝑠 operation time, 10−4 error rate for Clifford gates and 10−6 for non-Clifford gates

• (𝑛𝑠, 10−4): 100 𝑛𝑠 operation time, 10−4 error rate for Clifford gates and 10−4 for non-Clifford gates



HHL Circuit and QEC Cost
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Estimate the resource cost under a surface code 

that encodes 98 physical qubits into a logical 
qubit

• The logical qubit error rate is 10−9 to 10−10

*Tool: Microsoft Azure Quantum Resources Estimator

Faster runtime growth reduces the number of 𝑇-

factories needed, thereby reducing the total number 

of physical qubits.



Quantum Linear Solver in Differential Equation 
(DE) Solving

• Example: 2-D heat-diffusion PDE discretized via finite differences.
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𝜕𝑇

𝜕𝑡
= 𝐷∇2𝑇 + 𝐹 ⇒ 𝐴𝑇 = 𝐹

where

▪ 𝑇 is the temperature at a given 2-D point and time

▪ 𝐷 is the transfer coefficient

▪ 𝐹 is the forcing term that includes boundary / initial conditions

After discretization,  the linear system becomes 𝐴𝑇 = 𝐹

▪ 𝐴𝑝𝑞 = ቐ
1 + 4𝑟, 𝑝 = 𝑞

−𝑟, 𝑝 = 𝑞 ± 1 𝑜𝑟 𝑝 = 𝑞 ± 𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           for 𝑙 number of grid points

We tested 3-point (9 × 9 matrix) and 5-point (25 × 25 matrix) 



HHL Performance in DE Solving 
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• Errors are defined as (1) 𝑥 − 𝑥 𝐻𝐻𝐿 2 and 

(2) Ԧ𝑥 − Ԧ𝑥𝐻𝐻𝐿 2.
• The incremental of 𝑛𝑐 shows limited reduction 

towards errors.



Runtime Estimation in QEC Settings
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Estimate the runtime under a surface code that encodes 98 physical qubits into a logical qubit

[1] Beverland, M.E., Murali, P., Troyer, M., Svore, K.M., Hoefler, T., Kliuchnikov, V., Low, G.H., Soeken, M., Sundaram, A. and Vaschillo, A., 2022. Assessing requirements to scale to 

practical quantum advantage. arXiv preprint arXiv:2211.07629.

Qubit parameters from [1]:

• (𝜇𝑠, 10−4): 100 𝜇𝑠 operation time, 10−4 error rate for Clifford gates and 10−6 for non-Clifford gates

• (𝑛𝑠, 10−4): 100 𝑛𝑠 operation time, 10−4 error rate for Clifford gates and 10−4 for non-Clifford gates
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QEC Cost in DE Solving

Estimate the resource cost under a surface code 

that encodes 98 physical qubits into a logical 
qubit

• The logical qubit error rate is 10−9 to 10−10



Conclusion

• Highlighted the benefits of the utilization of low-precision QPE in HHL for both 
iterative and non-iterative methods in practice: 

▪ low-precision QPE can exponentially reduce the gate counts and circuit depth in an 
HHL circuit, while keeping the same solution accuracy in iterative methods like Newton-
Raphson method and maintain a similar level of accuracy in a non-iterative method like 
finite difference method.

• Demonstrated that runtime, number of logical cycles, and number of 𝑇 states 
all grow exponentially with the number of clock qubits in QPE

• Showed how the faster growth in runtime can offset physical-qubit 
requirements for 𝑇 factories preparation.
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