

QUANTUM ALGORITHMS AND ARCHITECTURES FOR DOMAIN SCIENCE

An Early Investigation of the Quantum Linear Solver for Scientific Applications

Muqing Zheng, Chenxu Liu, Samuel Stein, Xiangyu Li, Johannes Mülmenstädt, Yousu Chen, Ang Li

ArXiv: 2404.19067

PNNL is operated by Battelle for the U.S. Department of Energy

This research was supported by the QuAADS Initiative, under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL).

Harrow-Hassidim-Lloyd (HHL) Algorithm

- Quantum linear system problem: $A|x\rangle = |b\rangle$,
 - *A* is a Hermitian matrix, $|b\rangle = \frac{\vec{b}}{||\vec{b}||_2}$, $|x\rangle = \frac{A^{-1}|b\rangle}{||A^{-1}|b\rangle||_2}$

The phases estimated in QPE are stored as a n_c -bit binary string

• n_c is the number of clock qubits for QPE

Larger $n_c \Rightarrow$ Higher precision in eigenvalue estimation \Rightarrow Lower HHL solution error

However, each additional clock qubit roughly doubles the total number of gates in the HHL circuit.

HPC Quantum Simulator: NWQSim (1/2)

Routine	Description	Qubits	Gates	CX
seca	Shor's error correction code for teleportation	11	216	84
sat	Boolean satisfiability problem	11	679	252
сс	Counterfeit-coin finding algorithm		22	11
multiply	Performing 3×5 in a quantum circuit	13	98	40
bv	Bernstein-Vazirani algorithm	14	41	13
qf21	Quantum phase estimation to factor 21	15	311	115
qft	Quantum Fourier transform	15	540	210
multiplier	Quantum multiplier	15	574	246

Quantum routines evaluated for SV-Sim

The simulation latency of SV-Sim to the default simulators of Qiskit (IBM), Cirq (Google), and Q# (Microsoft) on the V100-DGX-2 platform using a single CPU core or a single GPU

[1] Li, Ang, et al. "Density Matrix Quantum Circuit Simulation via the BSP Machine on Modern GPU Clusters." SC-2020. http://github.com/pnnl/DM-Sim [2] Li, Ang, et al. "SV-Sim: Scalable PGAS-based State Vector Simulation of Quantum Circuits", SC-2021. http://github.com/pnnl/SV-Sim

HPC Quantum Simulator: NWQSim (2/2)

Strategy: 1q fusion \rightarrow 2q-fuse-1qforward \rightarrow 2q-fuse-1q-backward \rightarrow 2q fusion

- May switch qubits to enable more 2q fusion opportunities
- Fusion can bring a 2x-12x reduction in total gate count

[1] Li, Ang, et al. "Density matrix quantum circuit simulation via the BSP machine on modern GPU clusters." SC-2020. <u>http://github.com/pnnl/DM-Sim</u>
[2] Li, Ang, et al. "SV-Sim: Scalable PGAS-based State Vector Simulation of Quantum Circuits", SC-2021. <u>http://github.com/pnnl/SV-Sim</u>

NWQSim Performance on Different GPUs

The tested HHL circuits use randomly generated sparse matrices and random RHS vectors. The three numbers in each circuit's name denote: (1) number of qubits in the circuit; (2) number of qubits used for data loading; and (3) total number of gates.

No. of Qubits		CV gatas	Donth	Total No. of Gates		
n _d	n_c	CA gates	Depth	Before Fusion	After Fusion	
4	6	116,535	248,084	325,189	70,804	
5	7	1,111,178	2,373,842	3,106,244	665,921	
6	8	9,335,345	19,969,964	26,117,061	5,557,777	
7	9	78,420,632	167,816,254	219,386,270	46,631,320	

Azure Quantum Resource Estimator

Error budget is the overall allowed errors for the algorithm. Its value is equally divided into

logical error probability: the probability of at least one logical error

Pacific

Northwest

- T-distillation error probability: the probability of at least one faulty T-distillation
- rotation synthesis error probability: the probability of at least one failed rotation synthesis. After or pre-layout: if enforce 2-D nearest-neighbor connectivity of the qubits or not

[1] Beverland, M.E., Murali, P., Troyer, M., Svore, K.M., Hoefler, T., Kliuchnikov, V., Low, G.H., Soeken, M., Sundaram, A. and Vaschillo, A., 2022. Assessing requirements to scale to practical quantum advantage. arXiv preprint arXiv:2211.07629.

QC Applications in Power Systems

- Power flow and state estimation problems
 - The goal is to analyze the steady-state behavior of power systems by describing the relationship between bus voltages (magnitude and phase angles), currents, and power injections in a power system

Ouantum control

Power system operations Ouantum machine learning

Quantum data processing

Superconducting

Photonic

Ouantum hardware

Ouantum annealing

Trapped Ion

Spin qubit

Neutral atoms

AC Power Flow Problem

- For a system with B buses and G generators $\rightarrow 2(B-1) (G-1)$ unknowns \succ voltage magnitudes, |Vk|,
 - > phase angles, θ_k , for load buses and voltage phase angles for generator buses
- Power flow equations

$$P_{k} = \sum_{j=1}^{n} \left(|V_{k}||V_{j}|\operatorname{Re}(Y_{kj}^{*})\cos(\theta_{kj}) + |V_{k}||V_{j}|\operatorname{Im}(Y_{kj}^{*})\sin(\theta_{kj}) \right)$$
$$Q_{k} = \sum_{j=1}^{n} \left(|V_{k}||V_{j}|\operatorname{Re}(Y_{kj}^{*})\sin(\theta_{kj}) - |V_{k}||V_{j}|\operatorname{Im}(Y_{kj}^{*})\cos(\theta_{kj}) \right)$$

- P_k : real power injection at bus k
- Q_k : reactive power injection at bus k
- $|V_k|$: voltage magnitude at bus k
- θ_{kj} : phase angle difference between bus k and bus j
- Y_{ki}: admittance between bus k and bus j

Newton-Raphson Method

• Solve $f(\vec{y}) = \vec{d}$ where f is a non-linear algebraic function

in AC power flow problem

HHL and Newton-Raphson Method

- Linear systems solved are in the size of 16×16
- All quantum and classical runs converge at the same \vec{y}

Estimate the runtime under a surface code that encodes 98 physical qubits into a logical qubit

Qubit parameters from [1]:

- $(\mu s, 10^{-4})$: 100 μs operation time, 10^{-4} error rate for Clifford gates and 10^{-6} for non-Clifford gates
- $(ns, 10^{-4})$: 100 ns operation time, 10^{-4} error rate for Clifford gates and 10^{-4} for non-Clifford gates

[1] Beverland, M.E., Murali, P., Troyer, M., Svore, K.M., Hoefler, T., Kliuchnikov, V., Low, G.H., Soeken, M., Sundaram, A. and Vaschillo, A., 2022. Assessing requirements to scale to practical quantum advantage. arXiv preprint arXiv:2211.07629.

HHL Circuit and QEC Cost

Estimate the resource cost under a surface code that encodes 98 physical qubits into a logical qubit

• The logical qubit error rate is 10^{-9} to 10^{-10}

Error	n	Physical qubits	Logical qubits	Min. logical qubit	Min. T state
budget nc		after layout	pre- and after layout	error rate	error rate
0.01	4	32,144	9 to 28	3.977×10^{-10}	9.831×10 ⁻⁹
	5	28,380	10 to 30	1.797×10^{-10}	4.762×10^{-9}
	6	28,866	11 to 33	7.700×10^{-11}	2.236×10^{-9}
0.1	4	32,144	9 to 28	4.406×10^{-9}	1.098×10^{-7}
	5	32,340	10 to 30	1.990×10^{-9}	5.319×10 ⁻⁸
	6	32,634	11 to 33	8.487×10^{-10}	2.483×10^{-8}

Faster runtime growth reduces the number of *T*-factories needed, thereby reducing the total number of physical qubits.

*Tool: Microsoft Azure Quantum Resources Estimator

12

Quantum Linear Solver in Differential Equation (DE) Solving

Example: 2-D heat-diffusion PDE discretized via finite differences.

$$\frac{\partial T}{\partial t} = D\nabla^2 T + F \implies AT = F$$

where

- T is the temperature at a given 2-D point and time
- D is the transfer coefficient
- F is the forcing term that includes boundary / initial conditions

After discretization, the linear system becomes AT = F

•
$$A_{pq} = \begin{cases} 1 + 4r, p = q \\ -r, p = q \pm 1 \text{ or } p = q \pm l \\ 0, otherwise \end{cases}$$
 for *l* number of grid points

We tested 3-point (9×9 matrix) and 5-point (25×25 matrix)

HHL Performance in DE Solving

- Errors are defined as (1) $||x\rangle |x\rangle_{HHL}||_2$ and (2) $||\vec{x} - \vec{x}_{HHL}||_2$.
- The incremental of n_c shows limited reduction towards errors.

Dim.	n_d	n_c	Depth	# of gates	#of 2-qubit gates	# of gates after fusion
9 × 9	4	3	30742	40290	14315	8445
9 × 9	4	4	65824	86262	30651	18061
9 × 9	4	5	135986	178180	63315	37284
9 × 9	4	6	276308	361980	128631	75718
25×25	5	3	133966	175253	62546	37147
25×25	5	4	287134	375643	134046	79547
25×25	5	5	593948	777069	277230	164338

Runtime Estimation in QEC Settings

Estimate the runtime under a surface code that encodes 98 physical qubits into a logical qubit

Qubit parameters from [1]:

- $(\mu s, 10^{-4})$: 100 μs operation time, 10^{-4} error rate for Clifford gates and 10^{-6} for non-Clifford gates
- $(ns, 10^{-4})$: 100 ns operation time, 10^{-4} error rate for Clifford gates and 10^{-4} for non-Clifford gates

[1] Beverland, M.E., Murali, P., Troyer, M., Svore, K.M., Hoefler, T., Kliuchnikov, V., Low, G.H., Soeken, M., Sundaram, A. and Vaschillo, A., 2022. Assessing requirements to scale to practical quantum advantage. arXiv preprint arXiv:2211.07629.

QEC Cost in DE Solving

Estimate the resource cost under a surface code that encodes 98 physical qubits into a logical qubit

• The logical qubit error rate is 10^{-9} to 10^{-10}

Error		Physical qubits	Logical qubits	Min. logical qubit	Min. T state
budget	(n_d, n_c)	after layout	pre- and after layout	error rate	error rate
0.01	(4,3)	31850	8 to 25	1.01×10^{-9}	2.22×10^{-8}
	(4,4)	32144	9 to 28	3.97×10^{-10}	9.81×10 ⁻⁹
	(4,5)	28380	10 to 30	1.80×10^{-10}	4.77×10^{-9}
	(4,6)	28866	11 to 33	7.69×10^{-11}	2.23×10^{-9}
	(5,3)	28056	9 to 28	2.05×10^{-10}	5.11×10^{-9}
	(5,4)	28380	10 to 30	8.53×10^{-11}	2.27×10^{-9}
0.1	(4,3)	13450	8 to 25	1.12×10^{-8}	2.50×10^{-7}
	(4,4)	32144	9 to 28	4.40×10^{-9}	1.10×10^{-7}
	(4,5)	32340	10 to 30	2.00×10^{-9}	5.33×10^{-8}
	(4,6)	32634	11 to 33	8.47×10^{-10}	2.48×10^{-8}
	(5,3)	32144	9 to 28	2.27×10^{-9}	5.70×10^{-8}
	(5,4)	32340	10 to 30	9.39×10^{-10}	2.52×10^{-8}

Conclusion

- Highlighted the benefits of the utilization of low-precision QPE in HHL for both iterative and non-iterative methods in practice:
 - Iow-precision QPE can exponentially reduce the gate counts and circuit depth in an HHL circuit, while keeping the same solution accuracy in iterative methods like Newton-Raphson method and maintain a similar level of accuracy in a non-iterative method like finite difference method.
- Demonstrated that runtime, number of logical cycles, and number of T states all grow exponentially with the number of clock qubits in QPE
- Showed how the faster growth in runtime can offset physical-qubit requirements for T factories preparation.